A nonsynonymous mutation in the transcriptional regulator lbh is associated with cichlid craniofacial adaptation and neural crest cell development.
نویسندگان
چکیده
Since the time of Darwin, biologists have sought to understand the origins and maintenance of life's diversity of form. However, the nature of the exact DNA mutations and molecular mechanisms that result in morphological differences between species remains unclear. Here, we characterize a nonsynonymous mutation in a transcriptional coactivator, limb bud and heart homolog (lbh), which is associated with adaptive variation in the lower jaw of cichlid fishes. Using both zebrafish and Xenopus, we demonstrate that lbh mediates migration of cranial neural crest cells, the cellular source of the craniofacial skeleton. A single amino acid change that is alternatively fixed in cichlids with differing facial morphologies results in discrete shifts in migration patterns of this multipotent cell type that are consistent with both embryological and adult craniofacial phenotypes. Among animals, this polymorphism in lbh represents a rare example of a coding change that is associated with continuous morphological variation. This work offers novel insights into the development and evolution of the craniofacial skeleton, underscores the evolutionary potential of neural crest cells, and extends our understanding of the genetic nature of mutations that underlie divergence in complex phenotypes.
منابع مشابه
Tissue interactions, cell signaling and transcriptional control in the cranial mesoderm during craniofacial development
The cranial neural crest and the cranial mesoderm are the source of tissues from which the bone and cartilage of the skull, face and jaws are constructed. The development of the cranial mesoderm is not well studied, which is inconsistent with its importance in craniofacial morphogenesis as a source of precursor tissue of the chondrocranium, muscles, vasculature and connective tissues, mechanica...
متن کاملInca: a novel p21-activated kinase-associated protein required for cranial neural crest development.
Inca (induced in neural crest by AP2) is a novel protein discovered in a microarray screen for genes that are upregulated in Xenopus embryos by the transcriptional activator protein Tfap2a. It has no significant similarity to any known protein, but is conserved among vertebrates. In Xenopus, zebrafish and mouse embryos, Inca is expressed predominantly in the premigratory and migrating neural cr...
متن کاملPatched1 is required in neural crest cells for the prevention of orofacial clefts.
Defects such as cleft lip with or without cleft palate (CL/P) are among the most common craniofacial birth defects in humans. In many cases, the underlying molecular and cellular mechanisms that result in these debilitating anomalies remain largely unknown. Perturbed hedgehog (HH) signalling plays a major role in craniofacial development, and mutations in a number of pathway constituents underl...
متن کاملThe MADS box transcription factor MEF2C regulates melanocyte development and is a direct transcriptional target and partner of SOX10.
Waardenburg syndromes are characterized by pigmentation and autosensory hearing defects, and mutations in genes encoding transcription factors that control neural crest specification and differentiation are often associated with Waardenburg and related disorders. For example, mutations in SOX10 result in a severe form of Waardenburg syndrome, Type IV, also known as Waardenburg-Hirschsprung dise...
متن کاملThe neural crest-enriched microRNA miR-452 regulates epithelial-mesenchymal signaling in the first pharyngeal arch.
Neural crest cells (NCCs) are a subset of multipotent, migratory stem cells that populate a large number of tissues during development and are important for craniofacial and cardiac morphogenesis. Although microRNAs (miRNAs) have emerged as important regulators of development and disease, little is known about their role in NCC development. Here, we show that loss of miRNA biogenesis by NCC-spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 31 12 شماره
صفحات -
تاریخ انتشار 2014